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Abstract. We present the calculation of phase diagrams for a single-component fluid adsorbed
in disordered porous material using integral equation theories. The model consists of a Lennard-
Jones 12–6 fluid confined in a rigid matrix of spheres. In most cases a vapour–liquid coexistence
curve is obtained. It is similar to that observed for the bulk fluid although displaced towards the
phase that adsorbs preferentially. The ORPA+ B2 approximation also predicts the appearance
of a second fluid–fluid phase transition at low temperature that may be consistent with the
narrowing of the coexistence curve observed in experiments.

1. Introduction

The phase behaviour of fluids and fluid mixtures in disordered porous materials has been
recently the focus of much interest both from an experimental and a theoretical perspective
[1]. The systems studied include fluid mixtures in porous glasses as well as both single-
component fluids and fluid mixtures in dilute silica networks. There is now strong evidence
that fluids in porous media, at least in dilute gels, undergo true phase transitions, albeit with
features strikingly different from those of bulk fluids. Thus, the phase diagrams of4He
and N2 in aerogels show, compared to the bulk case, a remarkable narrowing of the liquid–
vapour coexistence curve and a displacement of the critical point to a lower temperature
and higher density [2]. Neither explanations that totally neglect the effect of randomness of
the pore network [3] nor interpretations in terms of the random-field Ising model (RFIM)
[4], where confinement plays no role, seem to be sufficient to describe all the observed
behaviours.

On the other hand, an approach that embodies confinement, randomness, and
connectivity of the pore network altogether has emerged recently through adaptation of
ideas from liquid-state statistical mechanics [5]. In this approach the system is modelled as
a so-called ‘quenched–annealed’ binary mixture in which the fluid molecules equilibrate in a
matrix of particles frozen in a disordered configuration. This latter configuration is sampled
from an equilibrium ensemble where the matrix particles interact via some specified potential
in the absence of the fluid. Many techniques from liquid-state statistical mechanics can be
extended to this problem by using the replica trick [6, 7]. The present paper is concerned
with the application of these ideas to the prediction of phase equilibrium for fluids in
disordered porous materials.
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2. Theory

The starting point of our calculations is a set of coupled integral equations which
relate the total pair correlation functionshαβ(r) of the quenched–annealed mixture to the
corresponding direct correlation functionscαβ(r). The exact form of these equations is
most easily derived by using the replica method [6] which replaces the study of the original
system by that of an equilibrium mixture composed of the matrix particles ands identical
copies (or replicas) of the fluid particles. Thes fluid replicas do not interact with each other
but they interact with the matrix. This set of coupled integral equations, called hereafter
the replica-symmetric Ornstein–Zernike (RSOZ) equations, is obtained by taking the limit
s → 0 of the corresponding set in the replica space. One finds

h00 = c00 + ρ0c00 ⊗ h00 (1a)

h10 = c10 + ρ0c10 ⊗ h00 + ρ1cc ⊗ h10 (1b)

h11 = c11 + ρ0c10 ⊗ h01 + ρ1cc ⊗ h11 + ρ1cb ⊗ hc (1c)

hc = cc + ρ1cc ⊗ hc (1d)

where the explicit dependence onr has been dropped for notational simplicity and the
symbol⊗ denotes a convolution inr-space.ρα is the average density of speciesi (α = 0
for the matrix,α = 1 for the fluid). hb, cb, hc ≡ h11 − hb, and cc ≡ c11 − cb are the
so-called blocking (or disconnected) part and connected part ofh11 and c11. As shown in
reference [7], the connected and blocking parts ofh11 correspond to the following averaged
quantities:

ρ2
1hc(r12) = ρ

(2)

11 (r1, r2; qN0) − ρ1(r1; qN0)ρ1(r2; qN0) (2)

and

ρ2
1hb(r12) = ρ1(r1; qN0)ρ1(r2; qN0) − ρ2

1 (3)

whereρ1(r1; qN0) andρ
(2)

11 (r1, r2; qN0) are, respectively, the one- and two-particle densities
of the fluid in a particular realization of the matrix in whichN0 matrix particles occupy
positions qN0 = (q1, q2, . . . , qN0) and the overbar represents the average over matrix
realizations.

The thermodynamics of quenched–annealed systems has been discussed in references [7]
and [8]. In particular, it has been shown that the grand potential density satisfies the Gibbs–
Duhem relation but is not equal to the mechanical pressure that is obtained by averaging the
stress tensor over matrix realizations. The thermodynamics can be computed directly from
the pair correlation functions using either the compressibility or the energy route. Although
the virial equation contains unusual terms, it is also a possible route to thermodynamics, as
shown recently [9].

One needs as usual closure relations to solve the RSOZ equations and derive the
thermodynamics. One first writes a closure for the(s + 1)-component ‘replicated’ mixture
and then takes the limits → 0. We propose here to use theories such as the optimized
random-phase approximation (ORPA) and the optimized cluster theory (OCT) [10] which
give an accurate treatment of correlation functions and vapour–liquid coexistence for bulk
fluids. Moreover, in ORPA and OCT, closed-form expressions of the free energy can be
derived. For instance, assuming that all pair interactions in the quenched–annealed mixture
comprise a reference hard-sphere part and an attractive perturbationuαβ , the ORPA free
energy can be written as [11]

AORPA = AR + 1

2
[ρ2

1(ĉc(0) − ĉR
c (0)) + ρ1ρ0(ĉ10(0) − ĉR

10(0))] − ρ1

2
[c11(0) − cR

11(0)]
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− 1

2(2π3)

∫
dk ln

1 − ρ1ĉc(k)

1 − ρ1ĉR
c (k)

− β
ρ1ρ0

2

∫
dr g01(r)u01(r)

+ ρ2
1

2

∫
dr [hc(r) − hR

c (r)]cR
b (r) + ρ1ρ0

2

∫
dr [h01(r) − hR

01(r)]c
R
01(r)

(4)

where R denotes a quantity in the reference system and the caret denotes the Fourier
transform of a function.

The mean-spherical approximation (MSA) is obtained from the ORPA by replacing the
exact reference correlation functions by their Percus–Yevick counterparts. An interesting
feature is that one can then derive a closed-form expression for the excess chemical
potential of the fluid [11]. One can also derive the EXP (exponential) approximation for
the correlation functions and the corresponding ‘ORPA+ B2’ approximation for the free
energy by summing additional diagrams in the OCT.

It should be noted that none of these theories is thermodynamically self-consistent in
the sense that the isothermal compressibilityχ obtained from the above expressions of the
free energy differs from the one given by the compressibility equation. As discussed in
reference [12], the compressibility route does not yield a critical point whend 6 4 in such
Ornstein–Zernike theories. This not the case when using the energy route, and one then
obtains classical mean-field behaviour at criticality.

Figure 1. Portions of coexistence envelopes for a completely repulsive fluid–matrix interaction
(y = 0). Each curve is labelled with the corresponding value of the reduced matrix densityρ∗

0.
(a) Predictions of the MSA. (b) Predictions of the ORPA+ B2 theory.

3. Results for a model system

The model consists of a fluid of spherical molecules confined in matrices of spheres
described by equilibrium hard-sphere (EHS) configurations. The matrix–fluid and fluid–
fluid interactions decompose into a hard-sphere part and a Lennard-Jones 12–6 tailà la
Weeks–Chandler–Andersen, i.e.,uαβ(r) = −εαβ for σαβ < r < 21/6σαβ and uαβ(r) =
4εαβ [(σαβ/r)12 − (σαβ/r)6] for r > 21/6σαβ . This defines the interaction ratioy = ε01/ε11.
In order to make contact with a recent MSA calculation for a lattice-gas version of a fluid
in a disordered matrix [13], we consider a system in whichσ01 = σ11 = σ . Moreover the
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Lennard-Jones tails are cut atr/σ = 2.5. In all calculations, the reference system correlation
functions are obtained by solving the RSOZ equations in the Percus–Yevick approximation
and the pressure and chemical potential of the reference system are calculated by integration
of the compressibility equation of state.

Figure 1(a) shows examples of coexistence envelopes in the case of a (completely
repulsive) hard–sphere fluid-matrix interaction (y = 0) obtained with MSA at the reduced
densitiesρ∗

0 = ρ0σ
3 = 0 (bulk), 0.05, 0.15, and 0.30 (T ∗ = kT /ε11 and the reduced

fluid densitiesρ∗
1 = ρ1σ

3 have been renormalized by the matrix porosityφ = 1−η0, where
η0 = π/6ρ∗

0). One sees a displacement of the critical point to lower temperature and to lower
density as one increases the matrix density. The critical-point suppression with increasing
confinement is also predicted by simple mean-field calculations [14]. The corresponding
phase diagrams obtained with the ORPA+B2 theory are shown in figure 1(b). Surprisingly,
they look quite different: as the density of the matrix increases, a shoulder appears on the
high-density side of the vapour–liquid coexistence region and this shoulder gives rise very
soon to a second coexistence region at lower temperature. Such a pre-evaporation transition
has been observed in the recent Monte Carlo simulations of Page and Monson [15] in
which the matrix particles are seven times larger than the fluid molecules. It corresponds
to an expulsion of the fluid from the regions where the matrix is more dense. The MSA
solution of the quenched–annealed lattice-gas model [13] also predicts the occurrence of
this transition when the fluid–matrix interaction becomes sufficiently repulsive.

Figure 2. Portions of coexistence envelopes as a function of the interaction ratioy for a matrix
with reduced densityρ∗

0 = 0.15. Each curve is labelled with the corresponding value ofy. (a)
Predictions of the MSA. (b) Predictions of the ORPA+ B2 theory.

Next we consider the case of attractive fluid–matrix interactions. Figure 2(a) shows
coexistence envelopes obtained with MSA as one varies the interaction ratioy while keeping
the density of the matrix equal toρ∗

0 = 0.15. It is seen that the variations of the critical
temperature withy are non-monotonic:Tc first increases and then decreases as one increases
y. On the other hand, the critical density increases monotonically and becomes larger than
the bulk value as observed in the experiments on aerogel [2]. Simple mean-field theories
[14] are unable to predict such features. The predictions of the ORPA+B2 theory shown in
figure 2(b) are again more complicated. Asy increases, the second coexistence region first
disappears, then reappears on the vapour side at low temperature and is finally displaced
to temperatures belowT ∗ = 0.5 . There is also a significant narrowing of the coexistence
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curve compared to the bulk one, although this effect seems smaller than in the experiments
[2]. A second transition on the low-density side of the vapour–liquid coexistence region has
been also found in Monte Carlo simulations [15] and in the MSA treatment of the lattice-
gas model [13]. The appearance of a second critical point is also predicted by a recent
calculation for an array of cylindrical strands [16]. In this case, however, it is attributed to
fluctuation-induced effects.

Finally, it should be noted that inclusion of next-order terms in the OCT expansion
of the free energy changes the overall picture again (the second transition does not exist
any more). This convergence problem in the theory can be traced back to the large values
reached by the renormalized potentials in the intermediate-density region. Such a problem
does not exist for bulk fluids where these densities correspond to the two-phase region and
only one van der Waals loop is expected.

4. Conclusion

We have presented a liquid-state formalism applicable to fluids in disordered porous media.
Although the model for the matrix is unable to represent realistic dilute silica gels, our study
using integral equations shows an interesting phase behaviour that may be consistent with
experimental results. In particular, some of our results suggest that the narrowing of the
coexistence curve may be related to the occurrence of a second phase transition at lower
temperatures. However, our predictions are sensitive to the approximation and, contrary to
the bulk case, the description of the phase behaviour of fluids in disordered porous media
appears to depend critically on the intermediate-density region.
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